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Abstract: We use the AdS/CFT correspondence to study N = 4 supersymmetric SU(Nc)

Yang-Mills theory, in the limits of large Nc and large ’t Hooft coupling, coupled to a

number Nf of massless hypermultiplet fields in the fundamental representation of the

gauge group. We identify a U(1) subgroup of the R-symmetry under which the fermions

in the hypermultiplet are charged but the scalars are not. All the hypermultiplet fields are

also charged under a U(1) baryon number symmetry. We introduce an external magnetic

field for the baryon number U(1), which triggers the spontaneous breaking of the U(1)

R-symmetry, and we then introduce a chemical potential for the U(1) R-charge, producing

a state with a nonzero density of the U(1) R-charge. The system should then exhibit

superconductivity of the U(1) R-charge. The dual supergravity description is a number

Nf of D7-branes in AdS5 × S5 with angular momentum on the S5 and a worldvolume

magnetic field. We study the zero-temperature thermodynamics of the system, and find

that for sufficiently large magnetic field the system prefers to be in the symmetry-broken

phase. For smaller magnetic fields we find a discontinuous free energy, indicating that our

gravitational setup does not capture all equilibrium states of the field theory.
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1. Introduction

The anti- de Sitter / Conformal Field Theory (AdS/CFT) correspondence [1 – 3], and more

generally gauge-gravity duality, provides a novel tool for studying strongly-coupled systems.

In particular, gauge-gravity duality provides tractable examples of strongly-coupled gauge

theories, and thus may shed light on the low-energy dynamics of the theory of the strong

interactions, Quantum Chromodynamics (QCD). More recently, gauge-gravity duality has

been used to study physical phenomena familiar from solid state physics, such as the

quantum Hall effect [4, 5] and superconductivity [6 – 12]. Gauge-gravity duality may thus

provide solvable toy models for condensed matter systems.

In this paper we will: 1.) identify a specific gravitational system whose field theory

dual includes a global U(1) symmetry under which only fermions are charged, 2.) study

states of that theory with a finite density of the U(1) charge, and 3.) study a mechanism

that triggers the spontaneous breaking of the U(1) symmetry, such that the system should

be in a superconducting state. We will not study the transport properties of the system,

however: in this paper we will study only zero-temperature, finite-density thermodynamics.

We will study a conformal field theory, namely N = 4 supersymmetric SU(Nc) Yang-

Mills theory (SYM), in the ’t Hooft limit Nc → ∞ with the ’t Hooft coupling λ ≡ g2
YMNc

fixed, and in the additional limit λ ≫ 1. We will introduce a number Nf of N = 2

supersymmetric hypermultiplets that transform in the fundamental representation of the

gauge group, i.e. flavor fields. An N = 2 hypermultiplet contains two complex scalars and
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two Weyl fermions of opposite chirality. We will call the scalars “squarks” and the fermions

“quarks,” in analogy with (supersymmetric) QCD. We will work in the “probe limit,” in

which we keep Nf fixed as we send Nc → ∞, so that Nf ≪ Nc, and work to leading order

in the small parameter Nf/Nc.

The AdS/CFT correspondence is the statement that N = 4 SYM theory in the limits

above is equivalent to type IIB supergravity on the near-horizon geometry of very many

D3-branes, which is AdS5 × S5, where AdS5 is (4+1)-dimensional anti- de Sitter space

and S5 is a five-sphere [1 – 3]. The correspondence is “holographic” in the sense that the

(3+1)-dimensional field theory is dual to gravity in the (4+1)-dimensional AdS space. The

Nf hypermultiplets appear in the supergravity description as a number Nf of D7-branes

embedded in the AdS5 × S5 geometry [13].

N = 4 SYM theory has an SO(6)R R-symmetry (hence the subscript). The flavor

fields explicitly break this to SO(4)R × U(1)R. Of the fields in the hypermultiplet, only

the fermions are charged under the U(1)R. Indeed, the U(1)R acts as a chiral symmetry,

rotating left- and right-handed quarks oppositely, just like the U(1) axial symmetry of

QCD. We may thus introduce a chemical potential for the U(1)R and produce a state with

a finite density of quarks only.

To break the U(1)R spontaneously, we will exploit the fact that the hypermultiplet

fields have a second U(1) symmetry. With Nf flavors of mass-degenerate hypermultiplets,

the SYM theory will have a global U(Nf ) symmetry. We may identify the overall, diagonal

U(1) as baryon number, U(1)B . We may introduce a non-dynamical, background magnetic

field, B, for the U(1)B . Previous AdS/CFT studies have shown that such a background

magnetic field causes spontaneous breaking of the U(1)R symmetry [14 – 17]. We thus want

to study a state with a finite U(1)R density of quarks and a U(1)B magnetic field.

What is the gravitational description of such a state? The SYM R-symmetry is dual to

isometries of the S5, and a finite R-charge density in the SYM theory is dual to a state in

supergravity with angular momentum in the S5 directions [18 – 21]. To introduce a U(1)R
density of quarks, then, we must study a D7-brane rotating in the S5 directions. D7- and

D5-branes spinning in AdS5 backgrounds have been studied in refs. [22, 23], respectively.

The U(1)B symmetry is dual to the U(1) gauge invariance on the worldvolume of the

D7-branes, hence to introduce a magnetic field in the SYM theory we must introduce a

magnetic field on the worldvolume of the D7-branes.

Notice that the U(1)R symmetry will not be broken due to finite density physics,

rather, we will break the symmetry by an external mechanism, the U(1)B magnetic field.

Contrast this with the usual physics of Bose-Einstein condensation as described by a theory

of a single complex scalar field with a potential including a mass term and a quartic term.

The theory has a global U(1) symmetry which shifts the phase of the field. Roughly

speaking, a chemical potential for the U(1) acts as a negative mass-squared. If the mass-

squared is positive, so that the potential has a single minimum and classically the field has

zero expectation value, a sufficiently large chemical potential causes a second-order phase

transition to a state of broken symmetry: the potential changes to a “wine bottle” shape.

Our system is analogous to a scalar field with a negative mass-squared, in the sense that

the symmetry is broken even at zero chemical potential. In particular, if our system does
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describe a superconductor, any “pairing” mechanism will be due to the magnetic field, and

not the due to high-density physics.

In addition, as the U(1)R is an R-symmetry, some of the fields of the N = 4 multiplet

also carry the U(1)R charge, and hence may also contribute to a state of finite U(1)R density.

We will ignore such a contribution. In supergravity language, we will only study D7-branes

spinning in AdS5 × S5, rather than D7-branes spinning in the near-horizon geometry of

spinning D3-branes [18 – 21]. In SYM theory language, we will introduce different values

of the chemical potential for different fields: zero for the adjoint fields and nonzero for

the flavor fields. We discuss the relevant background (of spinning D3-branes and N = 4

SYM theory with U(1)R chemical potentials [24 – 26]) below, in section 2.3. In particular,

the N = 4 SYM theory (in flat space) with a U(1)R chemical potential has no genuine

equilibrium ground state [24 – 26], so by ignoring the chemical potential for the adjoint

fields we are ignoring a known instability of the theory.

Despite its shortcomings, we hope that our system may serve as a nice toy model, i.e.

as a laboratory for questions about gravitational descriptions of superconductivity. This

system is attractive mainly because it is relatively simple and because the dual field theory

is explicitly known (in particular, we know that in the flavor sector only fermions carry the

U(1)R charge). Furthermore, we believe this system is more attractive than some other

systems with similar features, for a number of reasons.

Other gravitational systems dual to field theories with only fermions in the flavor

sector include for example the D4/D6 and D4/D8 models of refs. [27, 28]. An important

difference between our system and these systems is the potential between heavy test charges

in the field theory. The D4/D6 and D4/D8 systems describe field theories with confining

potentials, which are of course preferable when the goal is to study QCD. The N = 4

SYM theory with massless N = 2 flavor fields in the probe limit is conformal, hence the

potential between heavy test charges is necessarily Coulombic, which may be preferable

for some condensed matter applications. More generally, condensed matter systems near

quantum critical points are typically described by strongly-coupled conformal field theories

(see ref. [29] and references therein).

Other gravitational descriptions of field theories with spontaneously broken U(1) chiral

symmetry include for example the D4/D6 system as well as D7-branes in the Constable-

Myers background [30]. The benefit of using the U(1)B magnetic field to break the symme-

try is that, in some sense, it is intrinsic to the D7-brane, i.e. in field theory language we can

change the scale of chiral symmetry breaking (which is determined by the magnetic field

B) without changing any other physics. In contrast, consider the D4/D6 system of ref. [27].

In that case the scale of chiral symmetry breaking and the scale of confinement are both

set by the same parameter, the Kaluza-Klein compactification scale. If we want to change

the scale of chiral symmetry breaking, then, we must also change the glueball masses.

Our main results are that for sufficiently large U(1)B magnetic field the system prefers

to be in a symmetry-broken phase. For smaller values of the magnetic field we find a

gap in the free energy, indicating that our supergravity setup is missing something. More

specifically, our ansatz for the D7-brane embedding does not seem to capture all values of

the free energy.
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This paper is organized as follows. In section 2, we describe the SYM theory and its

supergravity dual in more detail. In section 3 we study D7-branes rotating in S5 directions

with no U(1)B magnetic field, extending the analysis of ref. [23]. In section 4 we review the

results of refs. [14 – 17] for non-rotating D7-branes in AdS/CFT with worldvolume magnetic

fields. In section 5 we study the full problem of rotating D7-branes with worldvolume

magnetic fields. We conclude in section 6 with some discussion and with suggestions for

future research. We collect some technical details in the appendix.

2. The theory and its supergravity dual

2.1 The theory

We will study the maximally supersymmetric Yang-Mills theory in (3+1) dimensions, N =

4 SYM theory, with gauge group SU(Nc). The fields of the N =4 supermultiplet include

the gluons, four Weyl fermions and three complex scalars. The N = 4 SYM theory is

conformal, so that the ’t Hooft coupling, λ ≡ g2
YMNc, is a free parameter. We will take the

’t Hooft limit of Nc → ∞ with λ fixed, followed by the strong-coupling limit λ≫ 1.

We will also introduce a number Nf of N = 2 supersymmetric hypermultiplets in the

fundamental representation of the gauge group, i.e. flavor fields. In the language of N = 1

supersymmetry, the N = 2 hypermultiplet contains two chiral multiplets of opposite chiral-

ity: two Weyl fermions of opposite chirality and two complex scalars. We will colloquially

refer to the fermions as “quarks,” and the scalars as “squarks,” in loose analogy with QCD.

We will keep Nf fixed as we take Nc → ∞, and work to leading order in the small

parameter Nf/Nc. This is known as the probe limit. In the language of perturbation theory,

we are discarding diagrams that contain quark or squark loops. More physically, we are

ignoring quantum effects due to the flavor fields because such effects are parametrically

suppressed by powers of Nf/Nc. In particular, we ignore the running of the coupling: the

beta function of the theory is proportional to λ2 Nf

Nc
, which vanishes in our limit, for fixed λ.

The N = 4 SYM theory has an SO(6)R R-symmetry. The flavor fields explicitly break

this to SO(4)R × SO(2)R. We will denote the current associated with the SO(2)R ≡ U(1)R
as Jµ. What are the charges of the fields under the U(1)R? A table of charge assignments

appears in many places, for example in refs. [31, 32]. In the N = 4 multiplet, one complex

adjoint scalar has charge +2. Two of the adjoint fermions have charge +1, and two have

charge −1. In the flavor sector, the squarks are neutral under the U(1)R. The fermion in

one N = 1 chiral multiplet has charge +1, while the fermion in the other chiral multiplet

has charge −1.

The U(1)R thus mimics the U(1) axial symmetry of QCD, and we will refer to it as a

chiral symmetry. Notice in particular that a quark mass term will explicitly break the U(1)R
symmetry. Additionally, if Nf is on the order of Nc then the U(1)R is anomalous, just like

the U(1) axial symmetry of QCD. In the probe limit, however, the anomaly is not apparent,

for the same reasons that the running of the gauge coupling is not apparent: the quantum

effects that produce the anomaly are parametrically suppressed by powers of Nf/Nc.

If the quarks are massless, so that the U(1)R is a symmetry of the Lagrangian and

Jµ is conserved, ∂µJ
µ = 0, then we may introduce a chemical potential for the U(1)R.
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In a state with a finite U(1)R density, any contribution that the flavor fields make to the

density must come from the quarks, and not from the squarks. Notice that, as the U(1)R
symmetry is an axial symmetry, a state with a net U(1)R density of quarks is a state with

an excess of left-handed quarks (for example).

2.2 The supergravity dual

We begin with type IIB string theory, where we consider an intersection of Nc coincident

D3-branes and Nf coincident D7-branes described by the array

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×
D7 × × × × × × × ×

(2.1)

We first consider the D3-branes alone. We take the near-horizon limit of the D3-brane

geometry, which gives us AdS5 × S5, with radius of curvature L given by L4 = 4πgsNcα
′2,

where gs is the string coupling and α′ is the square of the string length. We take the

usual limits of Nc → ∞ with gsNc fixed, followed by gsNc ≫ 1, so that L4 ≫ α′2. In

particular, in the latter limit, heavy string modes decouple, and we may approximate the

string theory by type IIB supergravity in AdS5 × S5. The AdS/CFT correspondence is

then the statement that supergravity on this background is equivalent to the low-energy

theory on the D3-brane worldvolume, which is N = 4 SYM theory in the ’t Hooft limit

with large ’t Hooft coupling.

The Nf D7-branes introduce additional open string degrees of freedom, producing

fields in the fundamental representation of the SU(Nc) gauge group on the D3-branes’

worldvolume. If we keep Nf finite as we take Nc → ∞, so that Nf ≪ Nc, we may neglect

the D7-branes’ contribution to the stress-energy tensor in the supergravity theory.1 The

D7-branes thus do not deform the geometry: they are probes embedded in AdS5×S5. The

D7-branes will be extended in the AdS5 directions as well as along an S3 ⊂ S5.

We will use an AdS5 × S5 metric suited to the symmetries of the D7-branes,

ds2 =
r26
L2

ηµνdx
µdxν +

L2

r26

(

dr2 + r2ds2S3 + dy2 + y2dφ2
)

(2.2)

Here r6 is the distance to the D3-branes in the transverse R
6, ds2S3 is the metric of a unit-

radius S3, and dy2 + y2dφ2 is the metric of the x8 -x9 plane written in polar coordinates.

Notice that r26 = r2 + y2. The boundary of AdS5 is located at r6 → ∞. Starting now, we

will use units in which L ≡ 1 unless stated otherwise. We then translate between string

theory and SYM theory quantities using α′−2 = 4πgsNc = g2
YMNc = λ.

The part of the D7-brane action that will be relevant here is the Dirac-Born-Infeld

(DBI) term,

SD7 = −NfTD7

∫

d8ζ
√

−det
(

gD7
ab + (2πα′)Fab

)

(2.3)

1Additionally, the D7-branes source the dilaton and axion, but again, in the probe limit we neglect this

effect. This is dual to the SYM theory statement that when Nf ≪ Nc the quantum effects of the flavor

fields that cause the running of the coupling and the U(1)R anomaly are suppressed.

– 5 –



J
H
E
P
0
1
(
2
0
0
9
)
0
7
4

Here TD7 is the D7-brane tension, ζa are the worldvolume coordinates, gD7
ab is the induced

worldvolume metric, and Fab is the U(1) worldvolume field strength.

The D7-brane has two worlvolume scalars, y and φ. An ansatz for the D7-brane

scalars that preserves the Lorentz invariance of the Minkowski space directions, and the

SO(4) × SO(2) isometry, is Fab = 0, φ = 0 and y(r). The induced D7-brane metric is then

ds2D7 = r26 ηµνdx
µdxν +

1

r26

(

dr2 (1 + y′(r)2) + r2 ds2S3

)

, (2.4)

and the D7-brane action is

SD7 = −N VR3,1

∫

dr r3
√

1 + y′(r)2 (2.5)

where we have defined the constant

N ≡ NfTD7VS3 =
λ

(2π)4
NfNc (2.6)

where VS3 = 2π2 is the volume of a unit-radius S3 and in the second equality we have

converted to field theory quantities using TD7 = α′−4g−1
s

(2π)7
= λNc

25π6 . Starting now, we will drop

the factor VR3,1 from eq. (2.5), which represents the (infinite) volume of (3+1)-dimensional

Minkowski space, and re-define SD7 as an action density.

The equation of motion for y(r) is

∂r

(

r3
y′(r)

√

1 + y′(r)2

)

= 0, (2.7)

which restricts the asymptotic form of solutions to be

y(r) = c0 +
c2
r2

+ O

(

1

r8

)

(2.8)

with constant coefficients c0 and c2. Here c0 is the asymptotic separation between the D3-

branes and the D7-branes in the x8 -x9 plane. A string stretched between the D3-branes

and D7-branes, whose endpoint represents an excitation in the fundamental representation

on the D3-brane worldvolume, will have minimum length c0. We may thus identify the mass

m of the hypermultiplet fields as this length times the string tension: m = c0
2πα′ =

√
λ

2π c0.

The field y(r) is dual to an operator Om in the SYM theory given by taking ∂
∂m of the

SYM theory Lagrangian. The operator Om thus includes the mass operator of the quarks,

m times the mass operator of the squarks, and a cubic coupling between the squarks and

one complex scalar of the N = 4 multiplet (the scalar with charge +2 under the U(1)R).

Om is written explicitly in the appendix. We also show in the appendix that the sub-leading

coefficient in eq. (2.8), c2, is related to the expectation value of Om as

〈Om〉 = − 1

(2π)3

√
λNf Nc 2 c2 (2.9)

Notice that Om is charged under the U(1)R symmetry (just as the quark mass operator

is charged under the U(1) axial symmetry of QCD), and hence, when c0 = 0, a nonzero

expectation value for Om signals the spontaneous breaking of the U(1)R symmetry.
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The D7-brane action, eq. (2.5), depends only on the derivative of y(r), and hence the

quantity in parentheses in eq. (2.7) is a constant of motion. Solutions with nonzero values of

the constant of motion have been studied in refs. [33, 34]. These solutions are not supersym-

metric, and in fact describe D7/anti-D7 configurations. For more details, see refs. [33, 34].

The factor under the square root in eq. (2.5) is a sum of squares, so the solution with

the smallest value of the on-shell action, which must be the physically preferred solution,

is y′(r) = 0, or y(r) = c0, in which case the constant of motion is zero. These embeddings

are supersymmetric. In the SYM theory, they describe hypermultiplet fields with mass

m =
√

λ
2π c0 and a vacuum state in which 〈Om〉 = 0.

In the supergravity picture, the y(r) = c0 solutions describe D7-branes that “end”

somewhere in AdS5, which is most easily seen from the induced D7-brane metric evaluated

on such a solution,

ds2D7 = (r2 + c20) ηµνdx
µdxν +

1

(r2 + c20)

(

dr2 + r2 ds2S3

)

. (2.10)

At the boundary, r → ∞, the induced metric approaches AdS5×S3. When r → 0, however,

we see that r26 = r2 + y2 → c20, so when c0 is nonzero, the D7-brane does not reach r6 = 0,

and we say that the D7-brane ends at r6 = c0. From the induced metric eq. (2.10), we can

see that when r = 0, the S3 has zero volume. What is happening as r decreases is that the

S3 ⊂ S5 “slips” or ”shrinks,” as allowed by topology, and eventually collapses to a point

at r = 0. Notice that if c0 = 0 (dual to massless hypermultiplets), then the S3 does not

slip, and the D7-brane is present at all values of r6.

The Ricci scalar R(r) associated with the D7-brane’s induced metric in eq. (2.10) is

R(r) = − 8 c20 + 14 r2

c20 + r2
(2.11)

At the boundary r → ∞, R(r) → −14, which is indeed the curvature of AdS5 × S3. At

the endpoint r → 0, R(r) → −8. In later sections we will compute the Ricci scalar of the

D7-brane numerically, and these limits will provide useful checks.

In subsequent sections we will encounter embeddings for which the curvature diverges

at r = 0. For a general solution y(r), an easy way to understand such a singularity is

by looking at the induced metric in eq. (2.4). To avoid an angular deficit, and hence a

conical singularity, at r = 0, we must have (1 + y′(r)2) → 1, hence y′(r) → 0. Solutions for

which y′(0) is nonzero are thus singular, as we will see below. When the curvature grows

we expect curvature corrections to the DBI action eq. (2.3) to become important, there-

fore we must discard such embeddings as unphysical: they are solutions to an equation of

motion that arises from an action that is no longer a reliable approximation to the actual

D7-brane action.

We want to study a state of the SYM theory with a nonzero U(1)R density. The global

U(1)R symmetry of the SYM theory is dual to the SO(2) isometry that rotates x8 and

x9 into one another, or equivalently that shifts φ by a constant. Notice for instance that

a finite c0 explicitly breaks the SO(2) isometry in the x8-x9 plane, which is dual to the

statement in the SYM theory that a finite mass m explicitly breaks the U(1)R symmetry. A

– 7 –
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state of the SYM theory with finite U(1)R charge density is dual to a supergravity solution

with nonzero angular momentum in φ. We thus want to study a D7-brane spinning in the

x8 -x9 plane, with a non-trivial y(r): if y(r) = 0, so that the D7-brane sits at the origin of

the x8 -x9 plane for all r, then obviously the D7-brane will have zero angular momentum

in φ. Moreover, in the SYM theory we want massless hypermultiplet fields, so that the

U(1)R is a symmetry of the Lagrangian, hence we want solutions with c0 = 0. For such

solutions, the leading term in the asymptotic form of y(r) will be the c2/r
2 term.

To summarize: our goal is to find embeddings in which the D7-brane rotates in φ and

has zero c0 with nonzero c2, i.e. the D7-brane has zero asymptotic separation from the

D3-branes but nonzero angular momentum in the x8 -x9 plane.

Notice what supergravity is telling us about the SYM theory: for a D7-brane with

c0 = 0 to have nonzero angular momentum, c2 must be nonzero. Translating to SYM

theory language, in any state with a finite U(1)R density, the U(1)R symmetry must be

spontaneously broken, as indicated by a nonzero 〈Om〉.
In AdS/CFT, we identify the supergravity action, when evaluated on a solution, with

the generating functional of the SYM theory [1 – 3]. More specifically, with a nonzero

chemical potential we identify the on-shell supergravity action SD7 with the thermodynamic

potential in the grand canonical ensemble, Ω, as SD7 = −Ω. For spinning D-branes, we

identify the angular frequency of rotation, ω, with the chemical potential, µ, and the

angular momentum with the density, 〈J t〉 [18 – 21]. In SYM theory language, the latter is

given by 〈J t〉 = −dΩ
dµ , so in supergravity language, we have 〈J t〉 = dSD7

dω . Notice that we will

thus be studying densities proportional to the factor N in SD7, that is, we will be studying

densities of order 〈J t〉 ∝ λNfNc. We write an explicit formula for dSD7

dω in the appendix.

Embeddings for probe D5-branes spinning in AdS5×S5 were studied in ref. [23]. In that

case, the dual SYM theory includes flavor fields confined to a (2+1)-dimensional defect.

The Lagrangian of this theory is written explicitly in refs. [35, 36]. Again, in that theory,

of the fields in the fundamental representation, only the fermions carry the relevant U(1)R
charge. Our results for the D7-brane in AdS5 × S5 in section 3 will be similar to those for

the D5-brane. Our results in section 5 for the D7-brane with a worldvolume magnetic field

will be new.

2.3 The adjoint contribution to the density

As mentioned in section 2.1, one of the complex scalars and all of the fermions of the N = 4

multiplet are charged under the U(1)R, hence these fields may contribute to a state with a

finite U(1)R density. A correct thermodynamic analysis must include all microstates that

produce the same macroscopic charge density, hence a correct thermodynamic analysis

must include states in which the fields of the N = 4 multiplet contribute to the density.

In other words, in the grand canonical ensemble we choose values of the temperature and

chemical potential, and the dynamics of the theory then determines the ground state.

In supergravity language, including the adjoint fields means allowing the D3-branes to

spin in the x8 -x9 plane. The near-horizon geometry of spinning D3-branes is known [18 –

21]. A complete supergravity analysis would thus involve allowing D7-branes to spin in

the background produced by spinning D3-branes. Notice, however, that we may give the
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D3-branes and D7-branes distinct angular frequencies. If the frequencies are equal, then

in the SYM theory we have a single chemical potential for the U(1)R. If the frequencies

are distinct, we have different values of the chemical potential for different fields in the

theory, one value for the fields of the N = 4 multiplet and another value for the fields

of the N = 2 hypermutliplet. Translating the SYM theory thermodynamic analysis to

supergravity language: a correct analysis would mean studying a system of D3-branes

and D7-branes spinning with the same angular frequency and finding the solution that

extremizes the on-shell supergravity action.

As done in ref. [23], however, we will simply ignore the rotation of the D3-branes.

In SYM theory language, we will introduce a nonzero U(1)R chemical potential for the

flavor fields only. From a SYM theory point of view, then, what we will do is artificial: we

introduce a U(1)R chemical potential only for the quarks, and then use the U(1)B magnetic

field to force them to pair and thus break the U(1)R. Nevertheless, as mentioned in the

introduction, we hope that this system may serve as a toy model for answering questions

about holographic superconductors.

To place our analysis in context, and to understand what ignoring the U(1)R chemi-

cal potential for the adjoint fields really means, we will now briefly review the results of

refs. [24 – 26], where the N = 4 SYM theory in the presence of a U(1)R chemical potential

was studied at both weak and strong coupling.2 One result of refs. [24 – 26] was that, in fact,

for any finite U(1)R chemical potential the SYM theory has no equilibrium ground state.

First consider the N = 4 SYM theory in the large-Nc limit, in flat space, at zero

temperature, and at zero ’t Hooft coupling. A U(1)R chemical potential will act as a

negative mass-squared for the scalar charged under the U(1)R. In the presence of a U(1)R
chemical potential, then, the potential has no minimum; the theory has no equilibrium

ground state. At finite coupling, the superpotential has a moduli space parameterized by

mutually-commuting constant background values for the adjoint scalars, and indeed, the

zero-temperature behavior persists from weak to strong coupling [25, 26], i.e. the theory at

zero temperature has no equilibrium ground state.

At finite temperature, a weak-coupling analysis of the N = 4 SYM theory with a U(1)R
chemical potential has been performed in refs. [24, 26]. The principal result was that for

chemical potentials below a critical value µcrit =
√
λT , the origin of the moduli space is

meta-stable. More precisely, when µ < µcrit, the potential exhibits runaway behavior for

large values of the scalars, but the origin of the moduli space is a local minimum with a

lifetime that grows exponentially with Nc. The meta-stability was discovered by computing

a one-loop effective potential for the scalars, plotted against the expectation values of the

scalar eigenvalues. The potential barrier between the meta-stable state and the unstable

state is lowest in the case of a single eigenvalue splitting from the rest. For µ > µcrit, the

2Notice that refs. [24 – 26] focus primarily on the N = 4 SYM theory formlated on a spatial three-sphere,

so that the adjoint scalars acquire a curvature coupling that acts as a positive mass-squared. The phase

structure then becomes more interesting than for the theory in flat space: for the details, see the phase

diagrams in the references. Roughly speaking, we can obtain the phase diagram for the theory in flat space

by taking a “large volume” limit in which the radius of the three-sphere goes to infinity (relative to all

other scales).
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potential barrier disappears, and with it the meta-stable state.

The finite-temperature story is qualitatively the same at strong coupling, where the

system can be analyzed using AdS/CFT. In particular, in ref. [25], an analysis of probe

D3-branes spinning in the near-horizon geometry of spinning D3-branes revealed that the

meta-stability persists to strong coupling: roughly speaking, the stack of Nc spinning D3-

branes “spits out” individual D3-branes one at a time. The supergravity picture thus

nicely agrees with the field theory picture of a single eigenvalue separating from the rest

and penetrating the potential barrier.

To return to our system: introducing D7-branes in the probe limit will not alter the

physics of the background produced by the spinning D3-branes since in the probe limit we

ignore the back-reaction of the D7-branes. If we included the rotation of the D3-branes,

then, we know a priori that the system is either meta-stable or unstable: it cannot be the

ground state because the system has no ground state. In other words, if we did include

the rotation of the D3-branes, then we would expect the D3-branes to carry most of the

angular momentum, and indeed to exhibit runaway behavior.3

D7-brane probes in the near-horizon geometry of spinning D3-branes have been studied

in refs. [37, 22]. The principal result was that the nonzero U(1)R chemical potential does

not trigger spontaneous breaking of the U(1)R symmetry.4 The case of D7-branes with

worldvolume magnetic fields probing the near-horizon geometry of spinning D3-branes

remains to be studied.

With the above background in mind (and in particular, remembering what we are

ignoring), we now turn to our analysis of D7-branes spinning in AdS5 × S5.

3. Finite U(1)R chemical potential

To study D7-branes spinning in AdS5 × S5, we consider the following ansatz for the D7-

brane worldvolume scalars: y(r) and φ(t, r) = ωt + f(r). We will thus have a D7-brane

spinning with frequency ω in the x8-x9 plane. As explained in ref. [23], and similar to the

system in ref. [38], the r dependence in φ(t, r) is required to guarantee the reality of the

D7-brane action for all values of r, for certain embeddings.

We can also motivate the r dependence in φ(t, r) via T-duality [22]. If we perform

a T-duality in the φ direction, the D7-brane becomes a D8-brane and φ(t, r) → Aφ(t, r),

hence the D8-brane now has a constant electric field pointing in the φ direction: Ftφ = ω.

From previous experience with electric fields on D-branes in AdS/CFT [38], we expect

that, to guarantee reality of the D7-brane action for all values of r, Aφ must have radial

dependence of the form Aφ(t, r) = ωt+ f(r) and hence, T-dualizing back to the D7-brane,

we find the φ(t, r) written above.

3We will mention in passing that we can “fix” the instability: in SYM theory language, we can compactify

the spatial directions into a three-sphere, which, for the N = 4 SYM theory alone, stabilizes the theory for

sufficiently small chemical potential.
4Notice that the result of ref. [37] seems to be the opposite: that the U(1)R chemical potential causes

breaking of the U(1)R in the flavor sector. As indicated in refs. [22, 23], however, that conclusion came

from using unphysical D7-brane embeddings. In fact, a U(1)R chemical potential does not cause breaking

of the U(1)R.
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With our ansatz, the induced metric gD7
ab of the D7-brane has components

gD7
rr = grr + gyyy

′2 + gφφφ
′2, gD7

tt = gtt + gφφφ̇
2, gD7

rt = gφφφ
′φ̇ (3.1)

where primes denote differentiation with respect to r and dots denote differentiation with

respect to t, and with all other components identical to eq. (2.4). The D7-brane action be-

comes

SD7 = −N
∫ ∞

0
dr r3

√

(1 + y′2)
(

1 − φ̇2
y2

(y2 + r2)2

)

+ y2φ′2 (3.2)

We will define the Lagrangian L via SD7 = −
∫

drL (notice the sign). The action depends

only on φ′(r), so the system has a constant of motion, which we call c,

δL
δφ′(r)

= N r3
y2φ′

√

(1 + y′2)
(

1 − ω2 y2

(y2+r2)2

)

+ y2φ′2
≡ c. (3.3)

We then solve algebraically for φ′(r),

φ′(r) =
c

y

√

√

√

√

(1 + y′2)
(

1 − ω2 y2

(y2+r2)2

)

N 2y2r6 − c2
. (3.4)

Plugging this into the action, we find

SD7 = −N
∫

dr r3
√

1 + y′2

√

√

√

√

1 − ω2 y2

(y2+r2)2

1 − c2

N 2

1
y2 r6

. (3.5)

We can derive the equation of motion for y(r) either by varying the action in eq. (3.2) and

then inserting the solution for φ′(r), or by varying the Legendre-transformed action ŜD7,

ŜD7 = SD7 −
∫

dr φ′(r)
δSD7

δφ′(r)

= −N
∫

dr r3
√

1 + y′2

√

(

1 − ω2
y2

(y2 + r2)2

) (

1 − c2

N 2

1

y2r6

)

. (3.6)

We will not write the equation of motion explicitly.

The numerator and denominator under the square root in the action eq. (3.5) can

change sign as r goes from infinity to zero. If one changes sign while the other does not,

then the action will become imaginary. Both must change sign simultaneously for the action

to remain real, i.e. the numerator and denominator under the square root in eq. (3.5) must

share a common zero. We thus find two curves in the (r, y) plane, and the D7-brane must

either cross both simultaneously or cross neither for the action to remain real. The first

curve is (here we restore factors of the AdS radius L)

1 − ω2 L4y2

(y2 + r2)2
= 0 (3.7)
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1
y

0.07

c�N

Figure 1: The value of c/N as a function of the y-position on the semicircle of eq. (3.8). Here

we have chosen ω = 1 as an example.

Which is just the equation for a semicircle of radius 1
2ωL

2, centered at (0, 1
2ωL

2):

(

y − 1

2
ωL2

)2

+ r2 =
1

4
ω2L4. (3.8)

As noted in ref. [23], the entire D7-brane spins with constant angular velocity ω, and its

linear velocity ω y(r) depends on r, as does the local speed of light, which decreases as r

decreases. The semicircle is where the D7-brane’s linear velocity equals the local speed of

light. The second curve is a cubic,

y(r) =
c

N
1

r3
. (3.9)

Notice that the semicircle is determined only by the value of ω, so once we choose ω it is

the same for all solutions. The value of c, however, varies from solution to solution. For

example, we will show shortly that some solutions reach r = 0 without ever crossing the

semicircle, so the numerator under the square root in eq. (3.5) remains positive for all r.

For the action to remain real, the denominator under the square root must also be positive

for all r, which is only possible if c = 0. For solutions that do cross the semicircle, the

value of c is fixed entirely by the position where the D7-brane crosses, that is, if (r0, y0)

is the point where the D7-brane crosses the semicircle (so that r0 and y0 obey eq. (3.8)),

then c = N y0 r
3
0. In other words, every solution that crosses the semicircle has its own

cubic curve. The qualitative behavior of c as a function of the y position on the semicircle

is depicted in figure 1. The maximum value of c occurs at y = 5
8 ωL

2, and c goes to zero

at y = 0 and y = ωL2.

From the equation of motion, we find the asymptotic form of y(r),

y(r) = c0 +
c2
r2

+
1

2
ω2 c0

log r

r2
+ O

(

log r

r4

)

(3.10)

Notice that when c0 is nonzero, a finite ω produces a logarithmic term at order 1/r2. As

mentioned above, we are interested in solutions with c0 = 0, for which the logarithmic term

will be absent. We show in the appendix that, given a solution for y(r) with nonzero ω,
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0 1 2
r0

1

2
yHrL

Figure 2: Numerically-generated solutions for spinning D7-brane embedding functions y(r). The

semicircle of eq. (3.8) is also depicted. Here we have chosen ω = 1 as an example.

the expectation value of Om is determined by y(r)’s asymptotic coefficients as

〈Om〉 = − 1

(2π)3

√
λNf Nc

(

2 c2 +
1

2
ω2 c0 +

1

2
ω2 c0 log(c20)

)

. (3.11)

From the explicit solution for φ′(r), we can also find φ(t, r)’s asymptotic form,

φ(t, r) = ωt − 1

2

c

c20

1

r2
+ O

(

log r

r4

)

(3.12)

Notice the factor of c20 in the denominator of the coefficient of the 1/r2 term, which suggests

that solutions with c0 = 0 (the ones we want) must have c = 0, as otherwise φ(t, r) diverges

asymptotically. Indeed, we have found numerically that this is always the case.

The field φ is dual to a SYM theory operator that we will denote Oφ, which is the

phase of the hypermultiplet mass operator Om. We write Oφ explicitly in the appendix.

We also show in the appendix that the constant c determines the expectation value of Oφ

as 〈Oφ〉 = c.

Our numerical solutions for y(r) are depicted in figure 2. We generate these as follows.

We divide solutions into two classes, those that reach r = 0 “above the semicircle,” and

those that intersect the semicircle.

Solutions that end above the semicircle have c = 0. These solutions describe D7-branes

for which the S3 collapses to zero volume before intersecting the semicircle. To generate

these, we specify the value of y(r) at r = 0, which must be ≥ ω, and we require that y′(r)
vanish at r = 0, to avoid a conical singularity, as explained in section 2.2.

Solutions that intersect the semicircle have nonzero c. The equation of motion depends

on c, so to generate solutions we first need to fix c, which we do simply by choosing a point

(r0, y0) on the semicircle. We then need the value of the derivative at the semicircle, y′(r0).
As in ref. [23], we can derive a regularity condition on y′(r) from the equation of motion

expanded about the semicircle. We have found numerically, however, that the solutions
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are amost entirely insensitive5 to the value of y′(r0). Given (r0, y0) and y′(r0), we can

numerically solve the equation of motion for all r.

The solutions in figure 2 are qualitatively similar to the solutions found for spinning

D5-branes in ref. [23]. The solutions are also qualitatively similar to the solutions found in

refs. [17, 39] for D7-branes with a worldvolume electric field, dual to the SYM theory in the

presence of external U(1)B electric field, which is easy to understand via T-duality argu-

ments such as the one we gave above. We will make three comments about the solutions.

First, as found in ref. [23] for spinning D5-branes, the only solution with c0 = 0 is the

trivial solution, y(r) = 0, which has no angular momentum. In other words, using SYM

theory language, for massless quarks, introducing the U(1)R chemical potential does not

break the U(1)R, but also does not produce a U(1)R density. We have not found a good

SYM theory argument for why this is so. Notice also that all the solutions that cross the

semicircle have nonzero c0.

Second, all the solutions with nonzero c0 describe flavor fields in the SYM theory with

time-dependent masses. More specifically, as φ corresponds to Oφ, the phase of the mass

operator Om, these solutions describe time-dependent masses of the form meiωt. We do

not have a good field theory intuition for the physics of such a mass term.

Third, all of the solutions that cross the semicircle are singular at r = 0 and hence

should be discarded as unphysical. We can see the singularity easily from figure 2: these

solutions all have nonzero y′(r) at r = 0. Additionally, given our numerical solutions we

have computed the Ricci scalar associated with the induced metric, eq. (3.1), and observed

the divergence explicitly.

In figure 3 we illustrate the behavior of the Ricci scalar for solutions ending above

the semicircle. As r → ∞, we see R(r) → −14 for all solutions, the expected value for

AdS5 × S3. Solutions that end far above the semicircle, with y(0) ≫ ω, should approach

the constant solution y(r) = c0 of a non-spinning D7-brane, and hence at r = 0 should

have R(0) → −8. In figure 3 we see that is the case. As y(0) decreases toward ω, however,

we see that the curvature at r = 0 decreases, and appears to diverge when the D7-brane

ends precisely at the semicircle, y(0) = ω. Such behavior is in fact familiar [30, 40 – 46]:

probe D7-branes in AdS-Schwarzschild may end “above” the black hole horizon or may

intersect the horizon. The “critical solution” that ends precisely at the horizon is singular.

We are seeing the same behavior, with the black hole horizon replaced by the semicircle.

We will not present plots for the Ricci scalar of solutions that intersect the semicircle.

We will only note that, again, as r → ∞, all solutions have R(r) → −14, and that the

curvature of every solution diverges at r = 0, as expected. Indeed, the curvature appears

to be extremely large everywhere inside the semicircle. For example, setting ω = 1, the

solution intersecting the semicircle at the point (r0, y0) ≈ (0.29, 0.91) reaches a curvature

on the order of 103 inside the semicircle within a distance 0.2 of the semicircle, and a

curvature of order 107 at a distance of 0.4. Clearly curvature corrections to the DBI action

will be important for such solutions, so we cannot trust them. Nevertheless, we will include

5In more detail: despite changing the value of y′(r) at the semicircle by five orders of magnitude, and

even changing its sign, the solutions always “settle down” to the solutions depicted in figure 2 within a very

short distance from the semicircle.
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Figure 3: The behavior of the Ricci scalar R(r) for D7-branes that end above the semicircle of

eq. (3.8), i.e. for which y(0) > ω. We have used ω = 1 to generate these figures. (a.) The Ricci

scalar for solutions with various values of y(0), ranging from y(0) = ω + 15 (the top curve) to

y(0) = ω + 0.76 (the bottom curve). All solutions have R(r) → −14 as r → ∞. (b.) The Ricci

scalar evaluated at r = 0, R(0), as a function of the position above the semicircle where the D7-

brane ends, y(0). We see that when y(0) ≫ ω, R(0) ≈ −8 as appropriate for the constant solution

y(r) = c0. As y(0) approaches the top of the semicircle, y(0) → ω, we see that R(0) diverges to

negative infinity.

such solutions in our later analysis, for two reasons. First, these solutions are required to

account for the full range of c0 values. Second, we expect that, in an AdS-Schwarzschild

background, the high-curvature region may be cloaked by the horizon, in which case such

solutions may become physically acceptable. The analogous figures in refs. [17, 39, 23] for

D-branes in AdS-Schwarzschild suggest this.

As discussed in refs. [22, 23], this system undergoes a first-order phase transition in

which, roughly speaking, as y(0) approaches ω the D7-brane “jumps” from ending outside

the semicircle to intersecting the semicircle. The transition is analogous to the D7-brane’s

first-order “meson melting” phase transition in the AdS-Schwarzschild background [30, 40 –

47] (for details, see refs. [22, 23]). The transition is between two solutions with nonzero

c0. We are interested only in solutions with c0 = 0, so we will not investigate the phase

transition here.

4. Finite U(1)B magnetic field

With Nf massless flavor fields, the SYM theory has a global U(Nf ) symmetry. We identify

the overall diagonal U(1) as baryon number, U(1)B . In the supergravity description, the

U(1)B current is represented by the U(1) gauge field, Aµ, propagating on the D7-brane

worldvolume. We can describe external electric and magnetic fields in the field theory,

coupled to anything carrying U(1)B charge, by introducing non-normalizable modes for Aµ

in the supergravity theory. For example, we will be interested in a magnetic field, which

we introduce by adding to our D7-brane ansatz the constant field strength Fxy = B. In the

SYM theory, we identify Fxy as a constant U(1)B magnetic field pointing in the z direction.
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The utility of introducing B is that, at zero temperature, zero mass, and zero U(1)R
chemical potential, AdS/CFT calculations have shown that the U(1)B magnetic field trig-

gers spontaneous breaking of the U(1)R symmetry [14 – 17]. In supergravity language, the

D7-brane is “repelled” from the origin of the (r, y) plane, so that the solution with zero

asymptotic separation, c0 = 0, is no longer just the trivial solution y(r) = 0.

To illustrate how this occurs, we will briefly review the results of refs. [14 – 17]. We

consider an ansatz for the D7-brane fields with y(r) and Fxy = B only (so for now φ(t, r) =

0). We will also define the notation B̃ ≡ (2πα′)B. The D7-brane action is then

SD7 = −N
∫

dr r3

√

√

√

√(1 + y′(r)2)

(

1 +
B̃2

(y2 + r2)2

)

(4.1)

From the equation of motion, we find the asymptotic form of y(r),

y(r) = c0 +
c2
r2

+ O

(

1

r4

)

, (4.2)

where again we translate to SYM theory quantities with m = c0
2πα′ and 〈Om〉 ∝ −2 c2.

We generate solutions numerically as follows. For all solutions we impose y′(0) = 0.

We then choose the value of y(0) and numerically integrate to large r. From these solutions

we extract the values of c0 and c2.

We present the plot of c2 as a function of c0 in figure 4 (a.). The curve actually spirals

into the origin, crossing the vertical axis an infinite number of times. We thus have infinitely

many solutions with c0 = 0. As argued in ref. [17], however, the c0 = 0 solution with lowest

energy will be the physical one, which turns out to be the “first” c0 = 0 solution, “first”

meaning the first c0 = 0 solution we reach as we enter the plot from the right (from large

values of c0). In fact, the other c0 = 0 solutions are not only thermodynamically disfavored,

they are unstable, having tachyonic fluctuations [15]. Notice in particular that the trivial

solution y(r) = 0, at the center of the spiral, is unstable.

The physical c0 = 0 solution has nonzero c2, indicating that in the SYM theory the

U(1)R is spontaneously broken. An analysis of the D7-brane’s fluctuation spectrum, dual to

the SYM theory’s meson spectrum, confirmed the existence of a Goldstone boson associated

with the symmetry breaking [14]. In the SYM theory, when m = 0 the only scale in

the problem is B, hence by dimensional analysis we have 〈Om〉 ∝ B3/2. More precisely,

〈Om〉 = − 1
(2π)3

√
λNfNc (2 × 0.226)B3/2 [14].

A picture of the physical c0 = 0 solution in the (r, y) plane appears in figure 4 (b.). This

is just what we want: a solution with zero asymptotic separation but nonzero extension

into the (r, y) plane. Our goal, roughly speaking, is to set this solution spinning, giving us

a solution with zero asymptotic separation but nonzero angular momentum.

5. Finite U(1)R chemical potential and U(1)B magnetic field

We will now study D7-branes spinning with angular frequency ω, and with a constant

worldvolume magnetic field Fxy = B, which will produce embeddings with c0 = 0 but
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Figure 4: (a.) The value of the sub-leading asymptotic coefficient c2 as a function of the leading

coefficient c0 for a D7-brane with nonzero worldvolume magnetic field B̃ = (2πα′)B. We have used

B̃ = 1. The curve actually spirals into the origin, and hence crosses the c0 = 0 (vertical) axis an

infinite number of times, although that is not apparent in our plot. The physical c0 = 0 solution

has c2 = 0.226. b.) The solution y(r) for the physical c0 = 0 solution, for B̃ = 1.

c2 6= 0. Such solutions describe states in the SYM theory with massless hypermultiplet

fields, a finite U(1)R density, and spontaneous breaking of the U(1)R symmetry.

We consider an ansatz for the D7-brane worldvolume fields with y(r), φ(t, r) = ωt+f(r)

and now Fxy = B. The DBI action becomes

SD7 = −N
∫

dr r3

√

√

√

√

(

(1 + y′2)
(

1 − φ̇2
y2

(y2 + r2)2

)

+ y2φ′2
)

(

1 +
B̃2

(y2 + r2)2

)

(5.1)

The constant of motion c is now

δL
δφ′(r)

= N r3
y2φ′

(

1 + B̃2

(y2+r2)2

)

√

(

(1 + y′2)
(

1 − ω2 y2

(y2+r2)2

)

+ y2φ′2
)(

1 + B̃2

(y2+r2)2

)

≡ c (5.2)

The solution for φ′(r) is now

φ′(r) =
c

y

√

√

√

√

√

(1 + y′2)
(

1 − ω2 y2

(y2+r2)2

)

N 2y2r6
(

1 + B̃2

(y2+r2)2

)

− c2
(5.3)

Plugging this into the action gives

SD7 = −N
∫

dr r3

(

1 +
B̃2

(y2 + r2)2

)

√

1 + y′2

√

√

√

√

√

1 − ω2 y2

(y2+r2)2

1 + B̃2

(y2+r2)2 − c2

N 2

1
y2 r6

(5.4)
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The Legendre transform of the action is

ŜD7 = SD7 −
∫

dr φ′(r)
δSD7

δφ′(r)

= −N
∫

dr r3
√

1 + y′2

√

√

√

√

(

1 − ω2
y2

(y2 + r2)2

)

(

1 +
B̃2

(y2 + r2)2
− c2

N 2

1

y2r6

)

. (5.5)

We can see that the equation for the semicircle is unchanged, but the cubic curve has

become

y(r) =

√

c2

N 2

1

r6
− B̃2

ω2
. (5.6)

The value of c is still fixed uniquely by a point on the semicircle. The plot of c versus y is

qualitatively similar to figure 1.

The asymptotic forms of y(r) and φ(t, r) are unchanged from the B̃ = 0 case, eqs. (3.10)

and (3.12). 〈Om〉 and 〈Oφ〉 are again given by eq. (3.11) and 〈Oφ〉 = c, respectively.

We generate solutions numerically in precisely the same way as in section 3. We first

consider solutions that intersect the semicircle. The behavior with nonzero B̃ is more

complicated than with zero B̃, so in figure 5 we present only a few examples. We choose

two points on the semicircle and generate solutions with increasing B̃. As B̃ increases, for

the solution intersecting the semicircle near the top, the value of c0 first decreases, but

then begins to increase. For the solution intersecting the semicircle near the bottom, the

value of c0 decreases, but only very little. We summarize the behavior of solutions with

the three-dimensional plot in figure 6, where we plot c0 as a function of B̃ and the value

of y where the solution intersects the semicircle, which we denote y0.

The behavior of the Ricci scalar for the semicircle-intersecting solutions is qualitatively

similar to the B̃ = 0 case: for all the solutions that intersect the semicircle, R(r) diverges

at r = 0, and indeed is extremely large almost everywhere inside the semicircle, and hence

the solutions must be discarded as unphysical.

The principal result of figures 5 and 6 is that all solutions that intersect the semicircle,

which have nonzero c, also have nonzero c0. We are only interested in solutions with c0 = 0,

however, so we will pay no more attention to solutions that intersect the semicircle.

Now for the solutions that end above the semicircle. We present some examples of

such solutions in figure 7, for increasing values of B̃. Here we find that for a given point

above the semicircle the corresponding value of c0 decreases as B̃ increases. Heuristically,

as we increase B̃, the solutions “bend down.” Turning things around, if we imagine fixing

c0 and integrating into the bulk, then as we increase B̃ we see that the point (above the

semicircle) where the solution reaches r = 0 increases (y(0) increases).

At a critical value of B̃ ≈ 6.73, a c0 = 0 solution appears: see figure 7. A c0 = 0

solution continues to exist for larger values of B̃, as we show in figure 8 (a.). Indeed, if

we look only at the c0 = 0 solution, and increase B̃, we find that the solution’s value of

y(0) increases. Heuristically, the D7-brane “bends out” more into the y direction as B̃

grows. Notice that, from the SYM theory point of view, when c0 = 0 the only scales in
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Figure 5: Illustration of behavior of semicircle-intersecting solutions as B̃ increases. Here we set

ω = 1. The top figure has B̃ = 0, and the subsequent figures show the behavior as B̃ increases. We

present plots for the values B̃ = 3, 6.73 (the critical value), 9 and 24.

the problem are B̃ and ω, so when working with c0 = 0 solutions we will always write B̃

in units of ω. The critical value of B̃ is thus B̃ ≈ 6.73ω2.

The trivial solution y(r) = 0 is another c0 = 0 solution, so once B̃/ω2 reaches the

critical value we can make a meaningful comparison between two c0 = 0 solutions. To

determine which is preferred, we must, in supergravity language, compare the values of

their on-shell action SD7, or, in SYM theory language, compare the values of their free

energy Ω. Recall that we identify SD7 = −Ω, so that the solution with larger SD7 will be

thermodynamically preferred.

The on-shell action SD7 suffers from divergences coming from the integration over the

infinite volume of AdS5. In SYM theory language, these are UV divergences, which we can

cancel with counterterms. In the appendix we perform the “holographic renormalization”

of the on-shell action by regulating and then cancelling the divergences using counterterms.

We will denote the renormalized action Sren, and identify Sren = −Ω.

The trivial solution has Sren = 0. We find numerically that when B̃/ω2 = 6.73, the

non-trivial c0 = 0 solution has Sren/N ≈ 11.3 > 0, and hence the nontrivial solution is

thermodynamically preferred. The value of Sren for the nontrivial c0 = 0 solution increases

monotonically with B̃/ω2 as shown in figure 8 (b.), so the non-trivial solution remains the

preferred solution as we increase B̃/ω2.
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Figure 6: Three-dimensional plot of c0 as a function of B̃ and the value of y where the solution

intersects the semicircle, denoted y0. Here we use ω = 1. The only points of the surface that reach

c0 = 0 are at y0 = 0, corresponding to the trivial solution (which intersects the semicircle at y0 = 0).

Näıvely, then, we might think the system exhibits a first-order phase transition. In

supergravity language, the D7-brane “jumps” from the trivial embedding to a nontrivial

embedding, with nonzero angular momentum. In SYM theory language, the theory jumps

from a state in which 〈Om〉 = 〈J t〉 = 0 to a state with nonzero 〈Om〉 and 〈J t〉. In figure 8

(c.) we plot 〈Om〉 (divided by (2πα′)N ) as a function of B̃/ω2 and in figure 8 (d.) we plot

〈J t〉 divided by N as a function of B̃/ω2, both for solutions with c0 = 0. Clearly both are

nonzero at the critical value B̃/ω2 = 6.73. As 〈Om〉 and 〈J t〉 are first derivatives of Ω, we

seem to have a first-order transition.

That is not correct, however, because the free energy itself is discontinuous: it jumps

from zero to nonzero at the critical value of B̃/ω2. Such behavior is unphysical, and signals

to us that something is missing. More specifically, some class of c0 = 0 embeddings appears

to be absent for values of B̃/ω2 below the critical value. What kind of embeddings could

“fill the gap” is not obvious to us, so we leave this as an open question.

Moreover, we should not trust the nontrivial embedding precisely at the critical value

of B̃/ω2 because such an embedding has very high curvature. Indeed, the story of the

scalar curvature for embeddings that end above the circle is qualitatively the same as in

the B̃ = 0 case: the curvature is finite everywhere, but the curvature at r = 0 grows as

y(0) approaches ω (the top of the circle), where it diverges. In figure 9 (a.) we plot the

Ricci scalar for the c0 = 0 solutions as we increase the value of B̃/ω2. For the critical

value B̃/ω2, the curvature of r = 0 diverges to negative infinity. In figure 9 (b.) we plot

the value of the Ricci scalar at the r = 0 endpoint for the c0 = 0 solutions as a function

of B̃/ω2. We see again that the curvature diverges at r = 0 for the critical solution and

then increases as we increase B̃/ω2. The closer we come to the critical solution, the less

we should trust our solutions.
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Figure 7: Illustration of the behavior of solutions that reach r = 0 above the semicircle. Here we

have set ω = 1. For a given value of y(0), as we increase B̃ the associated value of c0 decreases. We

present plots for the values B̃ = 0, 3, 6.73 and 9. At the critical magnetic field B̃ ≈ 6.73 the first

solution with c0 = 0 appears.

6. Conclusion

We have numerically constructed solutions, reliable within the supergravity approximation,

for a spinning D7-brane with a worldvolume magnetic field embedded in AdS5×S5. These

solutions describe N = 4 SYM theory coupled to massless N = 2 hypermultiplets in a state

with a nonzero background U(1)B magnetic field and nonzero U(1)R charge. The U(1)B
magnetic field causes spontaneous breaking of the U(1)R symmetry, hence the system

should exhibit U(1)R superconductivity. We initiated the study of the zero-temperature

thermodynamics of the system, and determined that for large enough values of the magnetic

field the system prefers a state of broken symmetry. For smaller values we found that our

class of D7-brane embeddings was insufficient to describe all equilibrium states of the SYM

theory. We will end with some suggestions for future research.6

6In our suggestions we continue to ignore the chemical potential of the adjoint fields. Of course a

worthwhile extension would be to include the adjoint fields’ chemical potential, and to study the system

on a spatial three-sphere, which stabilizes the theory for sufficiently small chemical potential [24 – 26]. A

good question, in supergravity language, is whether our spinning D7-brane with worldvolume magnetic field

minimizes the on-shell action, as opposed to a state in which the background geometry carries the angular

momentum.
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Figure 8: (a.) The behavior of solutions with c0 = 0 as B̃/ω2 increases. We use values of

B̃/ω2 ranging from B̃/ω2 = 6.73 (bottom curve) to B̃/ω2 = 30 (top curve). As B̃/ω2 grows, the

associated value of y(0) increases: the D7-brane “bends out” more in the y direction. (b.) The

value of the renormalized D7-brane action divided by N as a function of B̃/ω2 for solutions with

c0 = 0. The value of Sren/N at B̃/ω2 = 6.73 is approximately 11.3. (c.) The expectation value

〈Om〉, divided by (2πα′)N , as a function of B̃/ω2 for solutions with c0 = 0. (d.) The density 〈J t〉
divided by N as a function of B̃/ω2 for solutions with c0 = 0.

The biggest open question is, of course, where are the “missing” c0 = 0 embeddings

for small values of B̃/ω2, which must fill the “gap” in the free energy that we discovered

in section 5? We have left this as an open problem, being content that we found solutions

with the properties we wanted (c0 = 0, nonzero angular momentum, and finite curvature).

An important generalization would be to introduce a finite temperature T , correspond-

ing to D7-branes spinning in an AdS-Schwarzschild black hole background [48]. We have

hope that many of the singular embeddings we found would be “cured,” in the sense

that the high-curvature region would fall behind the black hole horizon. Additionally, in

refs. [16, 17], the finite-temperature physics of D7-branes with zero ω but nonzero B was

studied, with the result in the SYM theory that at high temperature the U(1)R symmetry

is restored. We expect something similar to happen when we include nonzero ω. In SYM

theory language, such a transition should extinguish the U(1)R superconductivity.

Similarly, another important generalization would be to introduce a background mag-

netic field for the U(1)R symmetry. We expect on general grounds that a sufficiently large
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Figure 9: The behavior of the Ricci scalar for D7-brane solutions with finite ω and B̃ and with

c0 = 0. (a.) The Ricci scalar R(r) for the c0 = 0 solutions for values of B̃/ω2 ranging from

B̃/ω2 = 6.73 (the bottom curve) up to B̃/ω2 = 30 (the top curve). (b.) The value of the Ricci

scalar at the r = 0 endpoint, R(0), for c0 = 0 solutions as a function of B̃/ω2.

magnetic field should extinguish superconductivity, that is, should restore the U(1)R sym-

metry. More generally, the phase diagram in the plane of U(1)R magnetic field versus

temperature should be explored.

The fluctuation spectrum of spinning D7-branes should be computed, which should

reveal the effects of a finite U(1)R chemical potential on the meson spectrum of the SYM

theory. Such an analysis should also exhibit explicitly the Goldstone boson associated with

the breaking of the U(1)R symmetry.

We chose an ansatz for the worldvolume fields that preserved many symmetries, such

as translation invariance in the field theory directions. An interesting extension would

be to consider a more general ansatz, respecting fewer symmetries. Indeed, in QCD at

low temperature, asymptotically high baryon number chemical potential, and in the large-

Nc limit (with Nf fixed), the ground state may break translation invariance, forming a

so-called “chiral density wave” [49, 50].

We have claimed that our system describes a superconductor, so perhaps the most

exciting task for the future would be studying the transport properties associated with the

U(1)R charge and exhibiting superconductivity explicitly. We expect, for example, to see

a gap in the frequency dependence of the U(1)R conductivity.
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A. Holographic dictionary

In this appendix we will: 1.) write explicitly the SYM theory operators dual to the D7-

brane worldvolume fields y and φ, 2.) regulate and renormalize the on-shell D7-brane

action, and 3.) compute the expectation values of the SYM theory operators dual to y and

φ, as well as the expectation value 〈J t〉, from the renormalized D7-brane action.

First, we will identify the operators dual to y and φ. These have been identified in

several references; we borrow the results of ref. [51]. We decompose the N = 2 hypermul-

tiplet into two N = 1 chiral multiplets of opposite chirality. Let ψ and q denote the Weyl

fermion and complex scalar of one chiral multiplet, and ψ̃ and q̃ the Weyl fermion and

complex scalar of the other chiral mutliplet. In particular, ψ and ψ̃ have opposite chirality.

The operator dual to y is the supersymmetric completion of the mass operator, which

we denote Om. In terms of the SYM theory fields, Om is

Om = iψ̃ψ + q̃
(

m+
√

2Φ
)

q̃† + q
(

m+
√

2Φ
)

q† + h.c. (A.1)

Here we use the notation Φ to denote the complex scalar of the N = 4 multiplet with

U(1)R charge +2.

The field φ is dual to the phase of Om (i.e. fluctuations of φ are dual to fluctuations

of the phase of the hypermultiplet mass term). We denote this operator as Oφ. In terms

of SYM theory fields, Oφ is

Oφ = ψ̃ψ + i
√

2 q̃Φ q̃† + i
√

2 qΦ q† + h.c. (A.2)

Next, we will show how to compute finite on-shell D7-brane actions. The on-shell action

diverges due to integration over the radial coordinate, r all the way to the AdS5 boundary

at r = ∞. To obtain a finite on-shell action, we first regulate the integral by introducing

a cutoff, r = Λ. We then introduce counterterms localized at the r = Λ hypersurface to

cancel the divergences of the action, and then send Λ → ∞, yielding a finite result. This

procedure is called “holographic renormalization” [52 – 57]. We will denote the induced

metric on the r = Λ hypersurface as γµν ,

ds2r=Λ = γµν dx
µdxν = Λ2 ηµνdx

µdxν (A.3)

and it determinant as simply γ, so that
√−γ = Λ4.

We will give φ the general coordinate dependence

φ(x, r) = k · x+ f(r) (A.4)

with xµ the coordinates of (3+1)-dimensional Minkowski space (hence µ runs from 0 to 3)

and kµ a four-vector: kµ = (−ω,~k) with spatial vector ~k. We will denote purely spatial

indices with lower-case Latin indices, for example, a component of ~k will be ki. We will

also use the notation (∂φ)2 = ηµν ∂µφ∂νφ.

We denote the regulated D7-brane action as Sreg, so that Sreg = −
∫ Λ

drL. With the

ansatz y(r), φ(x, r) and Fxy = B, we have

Sreg =−N
∫ Λ

drr3

√

√

√

√

(

(1+y′2)
(

1+(∂φ)2
y2

(r2+y2)2

)

+y2φ′2
)

(

1+
B̃2

(y2+r2)2

)

(A.5)
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Inserting the asymptotic forms of the solutions in eqs. (3.10) and (3.12) (with ω2 →
− (∂φ)2), we find

Sreg = −N
∫ Λ

dr

[

r3 +
1

2
c20 (∂φ)2

1

r
+

1

2
B̃2 1

r
+ O

(

log r

r2

)]

= −N
[

1

4
Λ4 +

1

4
c20 (∂φ)2 log Λ2 +

1

4
B̃2 log Λ2 +O

(

log Λ

Λ2

)]

(A.6)

We then introduce counterterms on the r = Λ hypersurface to cancel the divergences. The

counterterms that we use throughout this paper are

L1 = +
1

4
N √−γ (A.7a)

L2 = −1

4
N√−γ (γµν∂µφ∂νφ) gφφ(Λ) (log gφφ(Λ) + 1) (A.7b)

L3 = +
1

8
N √−γ (2πα′)2 F ijFij log(Λ2) (A.7c)

where gφφ(Λ) = y(Λ)2

Λ2 and F̃ij is (2πα′) times the D7-brane worldvolume field strength,

which for us will include only F̃xy = B̃. Written more explicitly, the counterterms are

L1 = +
1

4
N Λ4

L4

L2 = −1

4
N c20 (∂φ)2

(

log(c20) − log(Λ2) + 1
)

+ O

(

log Λ

Λ2

)

L3 = +
1

4
N B̃2 log(Λ2) (A.8a)

where the divergences in Λ cancel those in the regulated action, eq. (A.6). The renormalized

on-shell action, Sren, is

Sren = lim
Λ→∞

(

Sreg +
∑

i

Li

)

. (A.9)

A number of finite counterterms are possible. Indeed, some of the terms in eqs. (A.7)

are finite. We have chosen the particular counterterms above so that 〈Om〉 will have the

appropriate behavior as c0 → ∞: in SYM theory language, when m→ ∞ the flavor fields

decouple from the dynamics of the SYM theory. We must have 〈Om〉 → 0 in this limit,

which fixes the finite counterterms. We will ignore all other possible finite counterterms

(i.e. we will set their coefficients to zero).

We will now compute the expectation values 〈Om〉 and 〈Oφ〉. In the AdS/CFT corre-

spondence [1 – 3], we identify the on-shell supergravity action with the generating functional

(or grand canonical potential) of the SYM theory as Sren = −Ω. We thus have

〈Om〉 =
δΩ

δm
= −(2πα′)

δSren

δy(Λ)
= −(2πα′) lim

Λ→∞

(

δSreg

δy(Λ)
+
∑

i

δLi

δy(Λ)

)

(A.10)

The contribution from Sreg is

δSreg

δy(Λ)
= − δL

δy′

∣

∣

∣

∣

r=Λ

= N
(

2 c2 +
1

2
(∂φ)2 c0

(

1 − log(Λ2)
)

+ O

(

log Λ

Λ2

))

(A.11)
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where in the second equality we have inserted the asymptotic solutions eqs. (3.10)

and (3.12). Of the counterterms, L1 and L3 contribute nothing, while the contribution

from L2 is

δL2

δy(Λ)
= −1

2
N (∂φ)2 y(Λ)

[

log

(

y(Λ)2

Λ2

)

+ 2

]

(A.12)

= −1

2
N (∂φ)2 c0

[

log(c20) − log(Λ2) + 2
]

+ O

(

log Λ

Λ2

)

(A.13)

Summing everything and taking Λ → ∞, we find

〈Om〉 = −(2πα′)N
(

2 c2 − 1

2
(∂φ)2 c0 − 1

2
(∂φ)2 c0 log(c20)

)

(A.14)

In terms of SYM theory quantities, the prefactor is (2πα′)N = 1
(2π)3

√
λNf Nc.

To show that 〈Om〉 → 0 as c0 → ∞, we need to know the large-c0 behavior of c2. To

determine this, we borrow arguments of ref. [14]: to study large c0, we let y(r) = c0 +Y (r)

and linearize the Y (r) equation of motion, retaining only the leading terms in (c20 + r2)−1.

The equation of motion for the fluctuation Y (r) is then

∂r

[

r2 Y ′(r)
]

+ r3

[

2c0B̃
2 + c0 (∂φ)2 (c20 − r2)

(c20 + r2)3

]

= 0 (A.15)

which has the solution

Y (r) = α1 +
α2

r2
− 1

4

c0 (∂φ)2 (r2 + 2c20)

r2(c20 + r2)
− 1

4
c0 (∂φ)2

log(c20 + r2)

r2
− 1

4

B̃2c0
r2(c20 + r2)

(A.16)

with integration constants α1 and α2. To fix α1 we demand that limr→∞ Y (r) = 0 (so

that Y (r) does not alter the value of c0), which fixes α1 = 0. To fix α2, we argue that for

sufficiently large c0, the solution for Y (r) must be valid for all r. In particular, Y (r) must

be finite as r → 0, which means that the coefficient of the 1/r2 term must vanish as r → 0,

which means we must have

α2 =
1

2
c0 (∂φ)2 +

1

4
c0 (∂φ)2 log(c20) +

1

4

B̃2

c0
(A.17)

Inserting this value of α2 into Y (r) and then extracting c2 from the r → ∞ limit, we find

c2 =
1

4
c0 (∂φ)2 +

1

4
c0 (∂φ)2 log(c20) +

1

4

B̃2

c0
. (A.18)

We can then see from eq. (A.14) that as c0 → ∞ we indeed have 〈Om〉 → 0, for our

particular choice of counterterms.

For the c0 = 0 solutions that we want the finite counterterms, and the c0 terms in

〈Om〉, will not contribute. In numerical calculations, however, we necessarily deal with

solutions for which c0 is nonzero. We have used the counterterms above for all of our

numerical calculations.
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Now for 〈Oφ〉, which is simpler. We take

〈Oφ〉 =
δΩ

δφ(Λ)
= − lim

Λ→∞

(

δSreg

δφ(Λ)
+
∑

i

δLi

δφ(Λ)

)

=
δL
δφ′

∣

∣

∣

∣

r=Λ

= c. (A.19)

where in the final equality we have used eq. (3.3) for the constant of motion, δL
δφ′ = c.

Notice that the counterterms contribute nothing.

Lastly, we want to compute the U(1)R density 〈J t〉. In the SYM theory we have

〈J t〉 = −dΩ
dµ , so in supergravity language we have 〈J t〉 = dSren

dω . We will now restore

(∂φ)2 = −ω2. Let us first compute the contribution from Sreg, borrowing arguments from

ref. [16]. We start with the regulated action, eq. (A.5), evaluated on a solution. The action

is a functional of the fields y(r) and φ(t, r), and when evaluated on a solution has explicit

ω dependence as well as implicit dependence through y(r) and φ(t, r). We thus use the

chain rule:

dSreg

dω
= −N

∫ Λ

dr

[

∂L
∂ω

+
∂y

∂ω

∂L
∂y

+
∂y′

∂ω

∂L
∂y′

+
∂φ

∂ω

∂L
∂φ

+
∂φ′

∂ω

∂L
∂φ′

]

(A.20)

Notice in particular that in the first term the ∂
∂ω acts only on the explicit ω dependence in

L. We then use the fact that mixed partial derivatives commute to write ∂y′

∂ω = ∂
∂r

∂
∂ωy and

similarly for φ, and then integrate by parts to find

dSreg

dω
= −N

∫ Λ

dr

[

∂L
∂ω

+

(

∂L
∂y

− ∂

∂r

∂L
∂y′

)

∂y

∂ω
+

(

∂L
∂φ

− ∂

∂r

∂L
∂φ′

)

∂φ

∂ω

]

+
∂y

∂ω

∂L
∂y′

∣

∣

∣

∣

Λ

0

+
∂φ

∂ω

∂L
∂φ′

∣

∣

∣

∣

Λ

0

(A.21)

Clearly the coefficients of the ∂y
∂ω and ∂φ

∂ω terms inside the integral vanish on-shell.

Turning to the boundary terms, we start with those for y(r). Notice first that the

contribution from the r = 0 endpoint vanishes because ∂L
∂y′

∣

∣

∣

0
= 0 due to the r3 factor

outside the square root in eq. (A.5). The contribution from the r = Λ endpoint also

vanishes. To see this we must use the fact that in the SYM theory m and µ are independent

parameters, so that in the supergravity theory ∂c0
∂ω = 0. From the asymptotic form of y(r)

in eq. (3.10) we can then see that ∂y
∂ω at r = Λ is order log Λ

Λ2 . That, combined with the fact

that ∂L
∂y′ in eq. (A.11) is order one (in the Λ counting), indicates that the contribution from

the r = Λ endpoint is order log Λ
Λ2 and hence vanishes as Λ → ∞.

For the φ boundary terms we first identify ∂L
∂φ′ = c. Recalling that our ansatz is

φ(t, r) = ωt+f(r), the factor ∂φ
∂ω will give us a term which is simply t, which vanishes since

ct is independent of r, so (ct)|Λ0 = 0. As for the r dependence in φ, the contribution from

the r = Λ endpoint vanishes, as we can see from the asymptotic form of φ in eq. (3.12): the

leading term is order 1
Λ2 and hence vanishes as Λ → ∞. All that remains is the contribution

from the r = 0 endpoint.

We are only interested in c0 = 0 solutions, however, for which c = 0 anyway, so that

the φ boundary terms do not contribute at all. In those cases, the only contribution to

〈J t〉 comes from the first term under the integral.
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As for the counterterms, L1 and L3 contribute nothing, while from the explicit form

of L2 in eq. (A.8) we have that

dL2

dω
= +

1

2
N c20 ω

(

log(c20) − log(Λ2) + 1
)

+ O

(

log Λ

Λ2

)

Notice that this vanishes for the c0 = 0 solutions that we want.

To summarize: for the solutions we want, which have c = 0 and c0 = 0, and using the

solution for φ′(r) in eq. (5.3), 〈J t〉 is given by

〈J t〉 = −N
∫

dr
∂L
∂ω

= −N
∫

dr r3
√

1 + y′2

√

√

√

√

√

1 + B̃2

(y2+r2)2

1 − ω2 y2

(y2+r2)2

[

− ω y2

(y2 + r2)2

]

. (A.22)

Notice also that very similar arguments apply for the magnetization [16], given in

the SYM theory by − dΩ
dB . The biggest changes are that ω → B, the 1

Λ2 term in y(r)’s

asymptotic behavior is relevant to show that the y boundary term vanishes at r = Λ rather

than the log Λ
Λ2 term, and now counterterm L3 contributes rather than L2.
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